针对三相全波六状态工作无刷直流电机霍尔位置及特定换相逻辑下的电机旋向问题,提出一种通过右手螺旋定则确定每相绕组磁势方向进而确定电机霍尔位置,随后通过左手定则及牛顿第三运动定律对电机旋向进行判断的简易方法;并通过两款电机实际工程验证,确定该方法的正确性及普遍适用性。
无刷直流电机与有刷直流电机相比,不会产生有刷电机换相火花现象以及随之带来的电刷磨损问题,具有寿命长、噪声低、免维护等优点[1],因此其在空间飞行器领域普遍的应用,并逐步取代了传统有刷直流电机。由于无刷直流电机通过逻辑开关电路实现电子换相,因此其需要位置传感器对转子磁极位置做检测,以保障电子换相的准确性。霍尔位置传感器由于结构相对比较简单、易集成、占地小等优势,目前使用率最高[2]。精确确认霍尔传感器位置是确保电机高效运行的关键,本文主要对目前常用的三相全波六状态工作方式绕组星形连接的无刷直流电机霍尔传感器正确位置及电机旋向确认办法来进行介绍,并结合工程实际案例进行说明。
由于影响霍尔传感器位置的因素众多,为简化分析方法,下文分析基于如下约定:
(1)示例电机所选霍尔器件为锁存型霍尔器件,其逻辑1和逻辑0各占180°电角度;
(4)示例电机铁芯为直槽结构,针对斜槽电机,根据斜槽方式的不同,磁势需旋转斜槽角度的一半,具体旋转为从出线端看,同一槽如果轴伸端槽口位于出线端槽口左侧则逆时针旋转,如果轴伸端槽口位于出线端槽口右侧则顺时针旋转。
在绘制电枢绕组磁势向量星形图前需绘制电机电枢绕组图。工程上,电枢绕组图可依据工程仿真软件所绘绕组分布图直接画出,本文依据Ansoft仿真软件中绕组分布图进行绘制。Ansoft所示绕组分布图视图方向为从电机轴伸端视之,绕组分布图中相序标记前为“-”表示电流方向为垂直纸面流入,相序标记前无符号表示电流方向为垂直纸面流出。
图1所示为4极12槽整数槽电机绕组分布图,图2所示为20极18槽分数槽电机绕组分布图。
根据绕组分布图及Ansoft中电流方向定义可绘制两款电机电枢绕组图,分别如图3、图4所示,图中箭头方向为电流方向,序号表示铁芯槽号。
通过分析,电机霍尔传感器位置位于磁势轴线上,对于三相无刷电机,无论其绕组结构如何,在1对极下,共有两组6个霍尔传感器位置可供选择[3-4]。霍尔HA、HB、HC分别位于磁势FB、FC、FA或-FB、-FC、-FA位置[5]。
通过图3所示绕组图及右手螺旋定则可绘制出图5所示的4极12槽电机A相绕组磁势图,磁势图视图方向为电机尾部出线槽代表A相电流垂直纸面流入,4槽及10槽代表A相电流垂直纸面流出。同理,可将该4极12槽电机绕组磁势全部绘出,如图6所示。
进一步观察不难发现,对于整数槽电机,各相磁势皆位于各齿中心线个霍尔传感器位置,因此所有齿中心线为该类电机所有允许分布的霍尔传感器位置。
对于分数槽集中绕组电机,由于三相绕组未均匀间隔分布,因此就需要通过矢量合成方式绘制三相绕组每相合成磁势,随后通过阵列的方式绘出所有磁势方向。通过图4所示绕组图及右手螺旋定则可绘制出图7所示的20极18槽电机绕组合成磁势图,磁势图视图方向为电机尾部出线端视之。通过阵列方式可绘制该电机所有磁势,如图8所示。
通过观察示例电机磁势图不难发现,相邻两磁势间方向相反,A、B、C三相磁势依次交替分布。对于极对数较多的情形,可通过该结论判断磁势图绘制的正确性。
通过上文分析拟选定两款电机,霍尔传感器位置分别如图9、图10所示,20极18槽电机为霍尔双备份结构。
假定4极12槽电机转子初始位置如图11(a)所示。该电机霍尔标志面背对磁钢,此时霍尔HA、HB、HC输出线,绕组电流由C相通至A相,A相、C相所在槽电流方向为1槽、2槽、7槽、8槽垂直纸面流出,4槽、5槽、10槽、11槽垂直纸面流入。状态1时磁钢N极与1槽相对,槽中导体磁场方向为F,根据左手定则,此时槽中导体所受电磁力方向为f,根据牛顿第三运动定律,施加于转子磁钢上的反作用力方向为f′。同理,可对其他槽内导体做多元化的分析,此时电机转子呈现图示顺时针方向运动趋势。当转子运行至图11(b)所示状态2,此时霍尔HA、HB、HC输出线,槽内电流方向及转子受力方向如图11(b)所示,经分析电机仍保持顺时针方向运动。通过上述方法可对电机6个状态做多元化的分析,出线端视之电机皆顺时针运行。因此,当电机霍尔传感器处于图9所示位置,电机按表1所示真值进行换相,则出线端视之电机顺时针旋转。
假定20极18槽电机转子初始位置如图12(a)所示,该电机霍尔标志面朝向磁钢,此时霍尔HA、HB、HC输出线,按上述分析方法,此时槽内电流方向及转子受力方向如图12(a)所示,电机转子呈现图示顺时针方向运动趋势。当转子运行至图12(b)所示状态2,此时霍尔HA、HB、HC输出线,槽内电流方向及转子受力方向如图12(b)所示,经分析电机仍保持顺时针方向运动。通过上述方法可对电机6个状态做多元化的分析,出线端视之电机皆顺时针运行。因此,当电机霍尔传感器处于图10所示位置,电机按表1所示真值进行换相,则出线端视之电机顺时针旋转。
图13(a)及图14(a)分别为两款电机霍尔传感器实际安装的地方示意图,安装的地方与理论分析位置一致。图13(b)及图14(b)为两款电机出线端顺时针运行时霍尔传感器输出波形,波形从上到下依次为霍尔HA、HB、HC输出波形,霍尔真值变动情况与分析结果一致。
本文通过上述两个例子,验证了上述霍尔传感器位置及电机旋向确认方法的准确性。针对两相导通三相六状态电机,无论是整数槽绕还是分数槽绕,上述方法均具有普遍适用性。上述方法所得出的霍尔传感器位置为该类电机所有霍尔传感器位置,实际应用过程中可根据空间结构、尺寸等限制条件选取满足规定的要求的霍尔传感器位置。
交直流钳形电流表的测量原理 正常的情况下霍尔被用于测试直流电流。因为交流钳形表不能采用电磁感应法。霍尔传感器如下图所示放置。产生的磁通量与钳头中主要直流和交流电流成比例这是霍尔传感器检验测试磁通量并做为输出电压将之发散。 霍尔传感器:是一种半导体,可对被测物产生的偏置电流生成成比例电压并能在偏置电流应用于输入终端时产生输出终端磁场。
引言 电流测量可用于监测许多不同的参数,输入功率就是这里面之一。有许多采样元件都可用来测量负载电流,但没有一种元件能够覆盖所有应用。每种采样元件都有其优点和缺点。比如,分流电阻器的功耗会导致系统效率下降,而且电流流过分流电阻器产生的压降太大不适合低输出压的应用。DCR(电感直流阻抗)电流检测电路的优点是可以无损的遥测开关电源中的电流,但DCR采样电路的采样精度取决于外围参数(R,C)与电感器的匹配精度。霍尔传感器的优点是能够无损的远程测量较大的电流,缺点是易受环境噪声的影响不容易设计。 总之,对于具体的应用,只有了解每种方法的优点和缺点,才可以充分的利用电流检验测试领域的最新技术来改进测量精度。 分流电阻器 只要在布
0 引 言 随着单片机的不断推陈出新,特别是超高的性价比的单片机的涌现,转速测量控制普遍采用了以单片机为核心的数字化、智能化的系统。本文介绍了一种由单片机C8051F060作为主控制器,使用霍尔传感器进行测最的直流电机转速测量系统。 l转速测量及控制的基础原理 1.1转速测量原理 转速的测量方法很多,根据脉冲计数来实现转速测量的方法主要有M法(测频法)、T法(测周期法)和MPT法(频率周期法),该系统采用了M法(测频法)。由于转速是以单位时间内转数来衡量,在变换过程中多数是有规律的重复运动。根据霍尔效应原理,将一块永久磁钢固定在电机转轴上的转盘边沿,转盘随测轴旋转,磁钢也将跟着同步旋转,在转盘下方安装一个霍尔器件,转盘
转速测量系统设计 /
如何外观识别有刷无刷电机 最简单的识别方法就是看电机的引出线进行区分。如果电机的引出线是三根大线,外加五根细线,那就是无刷电机。有刷电机的意思是有碳刷,有刷电机的碳刷一般是两个或者三个,引出线一般就正负极两根,非常好区分。 看电机的引出线就可以看出来,无刷电机的转子上不需要外接电源,所以就没有因王引线;而有刷电机是需要外加电源的,因此有两根电源线(直流的),定子上的引出线是看不出区别的。 相对于有刷电机来讲,无刷电机的连续上班时间会很长,那是因为无刷电机是不需要换碳刷的;而有刷电机的碳刷在使用一段时间后会磨损,要换掉才可能正真的保证呢感电机的正常龟缩。所以他们的连续上班时间相差较大。 直流无刷电机养护
IIC深圳站上,汽车电子方案再次成为了热点,NEC、Atmel等实力强大的IC厂商自不必说,专注于某类专业产品而引起广泛注意的厂商也吸引了众多关注。Allegro就是这样以霍尔传感器为主导,为汽车的引擎管理和底盘传动系统提供检验测试方案的专业厂商。 在汽车的“心脏”——引擎中,凸轮轴靠凸轮顶动气缸的进排气门来实现气门的开闭,实现顺序的喷有控制、点火时刻控制和爆燃控制;曲轴是将活塞的平动转换成曲轴的转动从而输出发动机动力,确定点火时刻和喷油时刻。 霍尔传感器是目前主要的凸轮轴检测和曲轴检验测试手段,Allegro的工程师为我们详细的介绍了Allegro霍尔传感器的优势:ATS616采用了专利峰值检测算法,可提供出色的精度和
霍尔效应的原理 霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。流体中的霍尔效应是研究“磁流体发电”的理论基础。由霍尔效应的原理知,霍尔电势的大小取决于:Rh为霍尔常数,它和半导体材质有关;IC为霍尔元件的偏置电流;B为磁场强度;d为半导体材料的厚度。对于一个给定
的原理及应用 /
无刷直流电动机克服了普通直流电动机以机械方式换向,很适合利用电子控制器件进行灵活控制,目前在机器人关节控制等高精度的自动化仪器中应用尤为普遍。很典型的控制算法是采用传统的比例-积分-微分(PID)控制器来控制。然而,PID控制器的性能完全取决于对其增益参数的调节。近年来,人们也提出用人诸如神经网络算法、遗传算法、和模糊逻辑控制等许多人工智能控制来设计PID控制器。其中,模糊逻辑控制以其对非线性和不确定参数的良好解决能力而著称,特别适合于去控制像直流无刷电动机这样的有着高度非线性性能和大量随机扰动的系统。本文将介绍一种基于采用模糊逻辑优化的无刷直流电机的操控方法,并进行仿线 直流无刷电动机及其数学建模 无刷直流电机
控制 /
新产品包含有集成式磁体,更易于集成。 美国新罕布什尔州曼彻斯特市 – 服务于汽车、工业和消费/计算等高增长应用市场的高性能电源和传感器IC领导厂商Allegro MicroSystems, LLC(以下简称Allegro)新推一款高精度、集成背磁体、可编程差分式霍尔效应传感器IC ATS344。这款新器件集成了双线电流模式PWM输出,以帮助最大限度地减少远程传感器的引脚数量。它还集成有片上EEPROM技术,能够支持多达100次读/写循环,可用于灵活的下线非常适合于要求长行程(》 5mm)线性运动高分辨率检测的汽车应用。 集成式的反向偏置磁体大大简化了客户的封装,只需要一个铁质目标
技术 第2版 谭建成编著
MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!跟帖赢好礼~
电源小课堂 从12V电池及供电网络优化的角度分析电动汽车E/E架构的趋势
2月5日消息,AMD线程撕裂者竖起了工作站、发烧桌面处理器的天花板,Intel至强虽然无力抗衡,但也不能放弃,只是实力所限,提升有点慢,下一 ...
DevEco Studio 4.1带来多种调试能力,助力鸿蒙原生应用开发高效调试
目前,HarmonyOS NEXT星河预览版已经正式面向开发者开放申请,面向鸿蒙原生应用及元服务开发者提供的集成开发环境——DevEco Studio也迎 ...
英特尔 Thread Director 技术助力,Linux 用户运行 Windows 虚拟机性能提升 14%
2 月 5 日消息,去年 10 月,微软发布了一份指南,鼓励 Windows 用户通过 WSL 尝试 Linux,这多少让人有些意外。而如果你是一位 ...
不支持超线,新款英特尔 Arrow Lake-S 芯片样品现身测试数据库
2 月 3 日消息,消息人士 InstLatX64 近日在 X 平台分享了一条来自英特尔测试机数据库的信息,称发现了一款不支持超线 ...
智能家居是在物联网的影响之下物联化体现。智能家居通过物联网技术将家中的各种设备(如音视频设备、照明系统、窗帘控制、空调控制、安防系 ...
站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科